Fun

News Feed - 2023-08-28 10:08:00

Alice Ivey10 hours agoWhat are large language models, and how to deploy them?Explore the world of large language models and AI wonders designed to comprehend and generate human-like text.410 Total views13 Total sharesListen to article 0:00OverviewJoin us on social networksIn recent years, the world of artificial intelligence (AI) has been revolutionized by the advent of large language models. These models, such as OpenAI’s GPT-3, have showcased the immense potential of AI in understanding and generating human-like text. This article will delve into what exactly large language models are and how to deploy them for various applications.Understanding large language models


Large language models are a class of artificial intelligence models that have been trained on vast amounts of text data to understand, generate and manipulate human language.


These models utilize deep learning techniques, specifically a type of neural network called a transformer, to process and learn patterns from text data. The result is a model capable of comprehending context, semantics and syntax in human language, allowing it to generate coherent and contextually relevant text.


OpenAI’s GPT-3 (Generative Pre-trained Transformer 3) is one of the most prominent examples of a large language model. With 175 billion parameters (learnable weights), GPT-3 can perform a wide range of tasks, from language translation and text generation to code completion and conversation.


Related: What is prompt engineering and how does it workIn addition to prompting LLMs, many developers are now also experimenting with fine-tuning. I describe in The Batch how to choose from the growing menu of options for building applications with LLMs: Prompting, few-shot, fine-tuning, pre-training. https://t.co/NgPg0snzNt— Andrew Ng (@AndrewYNg) August 17, 2023 Deploying large language models


Deploying a large language model involves making it accessible to users, whether through web applications, chatbots or other interfaces. Here’s a step-by-step guide on how to deploy a large language model:Select a framework: Choose a programming framework suitable for deploying large language models. Common choices include TensorFlow, PyTorch and Hugging Face Transformers library.Prepare the model: If programmers use a pre-trained modellike GPT-3, they must ensure that they have access to the model’s parameters and weights. For other models, they might need to fine-tune them on specific tasks.Set up an interface: Decide how users will interact with the model. This could be through a web interface, a chatbot or a command-line tool.Application programming interface (API) integration (for pre-trained models): When using a pre-trained model like GPT-3, users can interact with it using API calls. OpenAI provides API documentation and guidelines for integrating its models into applications.Implement user input handling: Design the code to accept user inputs and pass them to the model. The model generates responses based on the input and its context.Post-process output: Depending on the task, users might need to post-process the model’s output to make it more coherent or user-friendly.Scalability and performance: Consider the scalability of the deployment. Large language models can be resource-intensive, so make sure that the infrastructure can handle concurrent requests.User experience: Design a user-friendly interface that guides users in interacting with the model effectively. This is crucial for a positive user experience.Security and privacy: Implement security measures to protect user data and prevent misuse of the model. Encryption, access controls and data anonymization should be considered.Testing and optimization: Thoroughly test the deployment to identify and fix any bugs or issues. Optimize the model’s performance for speed and accuracy.Monitoring and maintenance: Set up monitoring tools to keep track of the model’s performance and usage. Regularly update and maintain the model to ensure it stays up-to-date and functional.Applications of large language models


The versatility of large language models enables their deployment in various applications:Chatbots and virtual assistants: Large language models can power intelligent chatbots and virtual assistants that engage in natural language conversations with users.Content generation: They can create high-quality articles, product descriptions, marketing copy and more.Code generation: Large language models can assist developers by generating code snippets, completing code and providing programming-related explanations.Language translation: These models can be fine-tuned for specific languages and used for translation tasks.Content summarization: Large language models can automatically summarize long articles or documents.Personalized recommendations: They can provide personalized recommendations based on user preferences and behavior.


Related: How to learn Python with ChatGPTChatGPT can explain a JavaScript code in plain English. It “understood” the code was computing the pixel differences between a previous and next frame. Really good to start blog posts from code snippets! This function is used in @screenrunapp to detect mouse positions in a video pic.twitter.com/a44r7z5Qoy— Laurent Denoue (@ldenoue) January 28, 2023 Careful deployment of large language models is the key to success


Large language models represent a groundbreaking advancement in artificial intelligence, bringing human-like language understanding and generation capabilities to machines.


Deploying these models requires careful planning, coding and consideration of user experience and security. Venturing into the world of large language models will open the potential to transform a wide range of industries and applications, enhancing interactions between humans and machines in unprecedented ways.


Collect this article as an NFTto preserve this moment in history and show your support for independent journalism in the crypto space.# Technology# Adoption# AI# Machine Learning# ChatGPTAdd reactionAdd reactionRead moreHow to use index funds and ETFs for passive crypto income5 AI-themed movies to watch5 real-world Python applications 

News Feed

Lithuania Issues Warning to Binance, Warns Investors Crypto Services Are Not Regulated
Lithuania Issues Warning to Binance, Warns Investors Crypto Services Are Not Regulated Binance’s regulatory troubles continue with Lithuania being the late
Munchables hacker returns $62.8M Ether without ransom
Arijit Sarkar1 hour agoMunchables hacker returns $62.8M Ether without ransomOn March 27, 4:40 am UTC, Munchables identified the hacker as one of its developers. An hour of negotiations led to the former developer agreein
Dogecoin Crashes 40%, But This Analyst Sees A Bullish Setup
Este artículo también está disponible en español. In a dramatic reversal, Dogecoin (DOGE) plunged from around $0.34 as low as $0.20, wiping out nearly 40% of its value be
$40 XRP? Analyst Reveals Key Insights Suggesting Major Uptrend Ahead
Este artículo también está disponible en español. A crypto market analyst recently released a study that predicts a big rise in the price of XRP. This study fits with the
Cameroonian Fintech Ejara Raises $8 Million in Series A Investment Round
Cameroonian Fintech Ejara Raises $8 Million in Series A Investment Round Just over 12 months after raising $2 million, the Cameroonian fintech whose app allows users to buy and sto
Prometheum labels UNI, ARB securities in custody expansion
Derek Andersen4 hours agoPrometheum labels UNI, ARB securities in custody expansionPrometheum is the only SEC-registered crypto custody provider and already treats ETH as a security.612 Total views8 Total sharesListen to
Martin Young5 hours agoDapper Labs makes 3rd round of cuts in 9 months amid NFT slumpNFT collectibles company Dapper Labs has said goodbye to another 51 employees only months after a 20% staff reduction in February.1494
Hedge Fund Galois Capital Discloses ‘Roughly Half’ of the Firm’s Capital ‘Stuck on FTX’
Hedge Fund Galois Capital Discloses "Roughly Half" of the Firm"s Capital "Stuck on FTX" According to the co-founder of Galois Capital, the hedge fund manager who warned about the T
Hermi De Ramos11 hours agoHow blockchain, AI can help research into extending human lifeJasmine Smith, CEO of Web3-based wellness app Rejuve.AI, told Cointelegraph that decentralized and AI-powered platforms for health r
Bitcoin Skeptic Turns Bitcoin Bull: Billion Dollar Company Buys 17K BTC in 74 Hours
Bitcoin Skeptic Turns Bitcoin Bull: Billion Dollar Company Buys 17K BTC in 74 HoursNasdaq-listed company Microstrategy recently bought almost 17K bitcoins within 74 hours, costing a
Dogecoin Price Could Shoot Up To $2.74 – Here’s The Support Level To Watch
Reason to trust Strict editorial policy that focuses on accuracy, relevance, and impartiality Created by industry experts and meticulously reviewed The highest standards in reporting and pu
Technical Analysis: WAVES Almost 20% Higher to Start the Week, as FLOW Also Rises
Technical Analysis: WAVES Almost 20% Higher to Start the Week, as FLOW Also Rises WAVES was once again trading higher, as cryptocurrency markets marginally climbed to start the wee